International Journal of Molecular Sciences (Feb 2024)

Expression Patterns and Molecular Mechanisms Regulating Drought Tolerance of Soybean [<i>Glycine max</i> (L.) Merr.] Conferred by Transcription Factor Gene <i>GmNAC19</i>

  • Xiyan Cui,
  • Minghao Tang,
  • Lei Li,
  • Jiageng Chang,
  • Xiaoqin Yang,
  • Hongli Chang,
  • Jiayu Zhou,
  • Miao Liu,
  • Yan Wang,
  • Ying Zhou,
  • Fengjie Sun,
  • Zhanyu Chen

DOI
https://doi.org/10.3390/ijms25042396
Journal volume & issue
Vol. 25, no. 4
p. 2396

Abstract

Read online

NAC transcription factors are commonly involved in the plant response to drought stress. A transcriptome analysis of root samples of the soybean variety ‘Jiyu47’ under drought stress revealed the evidently up-regulated expression of GmNAC19, consistent with the expression pattern revealed by quantitative real-time PCR analysis. The overexpression of GmNAC19 enhanced drought tolerance in Saccharomyces cerevisiae INVSc1. The seed germination percentage and root growth of transgenic Arabidopsis thaliana were improved in comparison with those of the wild type, while the transgenic soybean composite line showed improved chlorophyll content. The altered contents of physiological and biochemical indices (i.e., soluble protein, soluble sugar, proline, and malondialdehyde) related to drought stress and the activities of three antioxidant enzymes (i.e., superoxide dismutase, peroxidase, and catalase) revealed enhanced drought tolerance in both transgenic Arabidopsis and soybean. The expressions of three genes (i.e., P5CS, OAT, and P5CR) involved in proline synthesis were decreased in the transgenic soybean hairy roots, while the expression of ProDH involved in the breakdown of proline was increased. This study revealed the molecular mechanisms underlying drought tolerance enhanced by GmNAC19 via regulation of the contents of soluble protein and soluble sugar and the activities of antioxidant enzymes, providing a candidate gene for the molecular breeding of drought-tolerant crop plants.

Keywords