JMIR Medical Informatics (Jun 2020)

Artificial Intelligence–Based Multimodal Risk Assessment Model for Surgical Site Infection (AMRAMS): Development and Validation Study

  • Chen, Weijia,
  • Lu, Zhijun,
  • You, Lijue,
  • Zhou, Lingling,
  • Xu, Jie,
  • Chen, Ken

DOI
https://doi.org/10.2196/18186
Journal volume & issue
Vol. 8, no. 6
p. e18186

Abstract

Read online

BackgroundSurgical site infection (SSI) is one of the most common types of health care–associated infections. It increases mortality, prolongs hospital length of stay, and raises health care costs. Many institutions developed risk assessment models for SSI to help surgeons preoperatively identify high-risk patients and guide clinical intervention. However, most of these models had low accuracies. ObjectiveWe aimed to provide a solution in the form of an Artificial intelligence–based Multimodal Risk Assessment Model for Surgical site infection (AMRAMS) for inpatients undergoing operations, using routinely collected clinical data. We internally and externally validated the discriminations of the models, which combined various machine learning and natural language processing techniques, and compared them with the National Nosocomial Infections Surveillance (NNIS) risk index. MethodsWe retrieved inpatient records between January 1, 2014, and June 30, 2019, from the electronic medical record (EMR) system of Rui Jin Hospital, Luwan Branch, Shanghai, China. We used data from before July 1, 2018, as the development set for internal validation and the remaining data as the test set for external validation. We included patient demographics, preoperative lab results, and free-text preoperative notes as our features. We used word-embedding techniques to encode text information, and we trained the LASSO (least absolute shrinkage and selection operator) model, random forest model, gradient boosting decision tree (GBDT) model, convolutional neural network (CNN) model, and self-attention network model using the combined data. Surgeons manually scored the NNIS risk index values. ResultsFor internal bootstrapping validation, CNN yielded the highest mean area under the receiver operating characteristic curve (AUROC) of 0.889 (95% CI 0.886-0.892), and the paired-sample t test revealed statistically significant advantages as compared with other models (P<.001). The self-attention network yielded the second-highest mean AUROC of 0.882 (95% CI 0.878-0.886), but the AUROC was only numerically higher than the AUROC of the third-best model, GBDT with text embeddings (mean AUROC 0.881, 95% CI 0.878-0.884, P=.47). The AUROCs of LASSO, random forest, and GBDT models using text embeddings were statistically higher than the AUROCs of models not using text embeddings (P<.001). For external validation, the self-attention network yielded the highest AUROC of 0.879. CNN was the second-best model (AUROC 0.878), and GBDT with text embeddings was the third-best model (AUROC 0.872). The NNIS risk index scored by surgeons had an AUROC of 0.651. ConclusionsOur AMRAMS based on EMR data and deep learning methods—CNN and self-attention network—had significant advantages in terms of accuracy compared with other conventional machine learning methods and the NNIS risk index. Moreover, the semantic embeddings of preoperative notes improved the model performance further. Our models could replace the NNIS risk index to provide personalized guidance for the preoperative intervention of SSIs. Through this case, we offered an easy-to-implement solution for building multimodal RAMs for other similar scenarios.