BMC Genomics (Jul 2018)

ATAC2GRN: optimized ATAC-seq and DNase1-seq pipelines for rapid and accurate genome regulatory network inference

  • Thomas J. F. Pranzatelli,
  • Drew G. Michael,
  • John A. Chiorini

DOI
https://doi.org/10.1186/s12864-018-4943-z
Journal volume & issue
Vol. 19, no. 1
pp. 1 – 13

Abstract

Read online

Abstract Background Chromatin accessibility profiling assays such as ATAC-seq and DNase1-seq offer the opportunity to rapidly characterize the regulatory state of the genome at a single nucleotide resolution. Optimization of molecular protocols has enabled the molecular biologist to produce next-generation sequencing libraries in several hours, leaving the analysis of sequencing data as the primary obstacle to wide-scale deployment of accessibility profiling assays. To address this obstacle we have developed an optimized and efficient pipeline for the analysis of ATAC-seq and DNase1-seq data. Results We executed a multi-dimensional grid-search on the NIH Biowulf supercomputing cluster to assess the impact of parameter selection on biological reproducibility and ChIP-seq recovery by analyzing 4560 pipeline configurations. Our analysis improved ChIP-seq recovery by 15% for ATAC-seq and 3% for DNase1-seq and determined that PCR duplicate removal improves biological reproducibility by 36% without significant costs in footprinting transcription factors. Our analyses of down sampled reads identified a point of diminishing returns for increased library sequencing depth, with 95% of the ChIP-seq data of a 200 million read footprinting library recovered by 160 million reads. Conclusions We present optimized ATAC-seq and DNase-seq pipelines in both Snakemake and bash formats as well as optimal sequencing depths for ATAC-seq and DNase-seq projects. The optimized ATAC-seq and DNase1-seq analysis pipelines, parameters, and ground-truth ChIP-seq datasets have been made available for deployment and future algorithmic profiling.

Keywords