EJNMMI Physics (Aug 2024)

Subtraction of single-photon emission computed tomography (SPECT) in radioembolization: a comparison of four methods

  • Camiel E. M. Kerckhaert,
  • Hugo W. A. M. de Jong,
  • Marjolein B. M. Meddens,
  • Rob van Rooij,
  • Maarten L. J. Smits,
  • Yothin Rakvongthai,
  • Martijn M. A. Dietze

DOI
https://doi.org/10.1186/s40658-024-00675-7
Journal volume & issue
Vol. 11, no. 1
pp. 1 – 16

Abstract

Read online

Abstract Background Subtraction of single-photon emission computed tomography (SPECT) images has a number of clinical applications in e.g. foci localization in ictal/inter-ictal SPECT and defect detection in rest/stress cardiac SPECT. In this work, we investigated the technical performance of SPECT subtraction for the purpose of quantifying the effect of a vasoconstricting drug (angiotensin-II, or AT2) on the Tc-99m-MAA liver distribution in hepatic radioembolization using an innovative interventional hybrid C-arm scanner. Given that subtraction of SPECT images is challenging due to high noise levels and poor resolution, we compared four methods to obtain a difference image in terms of image quality and quantitative accuracy. These methods included (i) image subtraction: subtraction of independently reconstructed SPECT images, (ii) projection subtraction: reconstruction of a SPECT image from subtracted projections, (iii) projection addition: reconstruction by addition of projections as a background term during the iterative reconstruction, and (iv) image addition: simultaneous reconstruction of the difference image and the subtracted image. Results Digital simulations (XCAT) and phantom studies (NEMA-IQ and anthropomorphic torso) showed that all four methods were able to generate difference images but their performance on specific metrics varied substantially. Image subtraction had the best quantitative performance (activity recovery coefficient) but had the worst visual quality (contrast-to-noise ratio) due to high noise levels. Projection subtraction showed a slightly better visual quality than image subtraction, but also a slightly worse quantitative accuracy. Projection addition had a substantial bias in its quantitative accuracy which increased with less counts in the projections. Image addition resulted in the best visual image quality but had a quantitative bias when the two images to subtract contained opposing features. Conclusion All four investigated methods of SPECT subtraction demonstrated the capacity to generate a feasible difference image from two SPECT images. Image subtraction is recommended when the user is only interested in quantitative values, whereas image addition is recommended when the user requires the best visual image quality. Since quantitative accuracy is most important for the dosimetric investigation of AT2 in radioembolization, we recommend using the image subtraction method for this purpose.

Keywords