BMC Plant Biology (Dec 2022)

Hydrogen peroxide pretreatment assisted phytoremediation of sodium dodecyl sulfate by Juncus acutus L

  • Amany H. A. Abeed,
  • Suzan A. Tammam,
  • M. T. El-Mahdy

DOI
https://doi.org/10.1186/s12870-022-03984-0
Journal volume & issue
Vol. 22, no. 1
pp. 1 – 16

Abstract

Read online

Abstract Background Sodium Dodecyl Sulfate (SDS) an anionic surfactant pollutant has emerged as a serious hazard to the aquatic and terrestrial environment. Due to physical and chemical methodological difficulties for SDS removal, phytoremediation techniques are efficient alternative strategies to tackle such adversities. Juncus acutus L. (J. acutus) is a pioneer wetland species that has been recently exploited for phytoremediation purposes. To our knowledge, the role of exogenous hydrogen peroxide (H2O2), in improving the phytoextraction of SDS has not been examined yet. In this study, pretreatment foliar spray of H2O2 (15 mM) combined with two levels of SDS (50 and 100 ppm) in water culture was evaluated to remove SDS contamination and add value to the phytoremediation process. Results The outcomes revealed that J. acutus has considerable translocation and bioaccumulation abilities for SDS and can be utilized as an appropriate hyperaccumulator in SDS-contaminated sites. However, the involvement of H2O2 extended phytoremediation capacity and successive removal of SDS. H2O2 significantly assisted in increasing SDS remediation via more accumulation in J. acutus tissues by 29.9 and 112.4% and decreasing SDS concentration in culture media by 33.3 and 27.3% at 50 and 100 ppm SDS, respectively. Bioaccumulation factor (BCF) increased by 13.8 and 13.2%, while translocation factor (TCF) positively maximized by 82.4 and 76.2% by H2O2 application at 50 and 100 ppm SDS, respectively. H2O2 pretreatment could drive the decline in biochemical attributes in SDS-affected plants by modulating stress tolerance indices, pigments, water relations, proline content, enzymatic activities, and further, reduced oxidative stress in terms of electrolyte leakage, cellular H2O2, malondialdehyde (MDA) accumulation. Conclusions H2O2 could play a potential role in maximizing phytoremediation capacity of SDS by J. acutus in polluted sites.

Keywords