Scientific Reports (Apr 2023)

Polypropylene microplastics promote metastatic features in human breast cancer

  • Jun Hyung Park,
  • Seungwoo Hong,
  • Ok-Hyeon Kim,
  • Chul-Hong Kim,
  • Jinho Kim,
  • Jung-Woong Kim,
  • Sungguan Hong,
  • Hyun Jung Lee

DOI
https://doi.org/10.1038/s41598-023-33393-8
Journal volume & issue
Vol. 13, no. 1
pp. 1 – 11

Abstract

Read online

Abstract Microplastics (MPs) are now a global issue due to increased plastic production and use. Recently, various studies have been performed in response to the human health risk assessment. However, these studies have focused on spherical MPs, which have smooth edges and a spherical shape and account for less than 1% of MPs in nature. Unfortunately, studies on fragment-type MPs are very limited and remain in the initial stages. In this study, we studied the effect that 16.4 µm fragment type polypropylene (PP) MPs, which have an irregular shape and sharp edges and form naturally in the environment, had on breast cancer. The detrimental effects of PPMPs on breast cancer metastasis were examined. Here, 1.6 mg/ml of PPMP, which does not induce cytotoxicity in MDA-MB-231, was used, and at this concentration, PPMP did not induce morphological changes or cellular migrating in the MDA-MB-231 and MCF-7 cells. However, PPMP incubation for 24 hours in the MDA-MB-231 cells significantly altered the level of cell cycle-related transcripts in an RNA-seq analysis. When confirmed by qRT-PCR, the gene expression of TMBIM6, AP2M1, and PTP4A2 was increased, while the transcript level of FTH1 was decreased. Further, secretion of the pro-inflammatory cytokine IL-6 from cancer cells was elevated with the incubation of PPMP for 12 hours. These results suggest that PPMP enhances metastasis-related gene expression and cytokines in breast cancer cells, exacerbating breast cancer metastasis.