Nature Communications (Jul 2022)

A convolutional neural network highlights mutations relevant to antimicrobial resistance in Mycobacterium tuberculosis

  • Anna G. Green,
  • Chang Ho Yoon,
  • Michael L. Chen,
  • Yasha Ektefaie,
  • Mack Fina,
  • Luca Freschi,
  • Matthias I. Gröschel,
  • Isaac Kohane,
  • Andrew Beam,
  • Maha Farhat

DOI
https://doi.org/10.1038/s41467-022-31236-0
Journal volume & issue
Vol. 13, no. 1
pp. 1 – 12

Abstract

Read online

Pathogen whole genome sequencing, coupled with statistical and machine learning models, offers a promising solution to multi-drug resistance diagnosis. Here, the authors present two deep convolutional neural networks that predict the antibiotic resistance phenotypes of M. tuberculosis isolates.