Materials Today Advances (Aug 2024)

Humidity sensitive memristor based on Ni–Al layered double hydroxides

  • Yanmei Sun,
  • Bingxun Li,
  • Ming Liu,
  • Zekai Zhang

Journal volume & issue
Vol. 23
p. 100515

Abstract

Read online

Reaping the advantages of their exceptional humidity-sensitive elements, humidity sensors exhibit a remarkable ability to adapt to alterations in ambient moisture levels. The significance of the humidity sensor in biological detection is progressively growing, owing to this characteristic. This work examines the impact of humidity on the resistive switching properties Ni–Al layered double hydroxides (LDHs) memristor. As the porous Ni–Al LDHs material contains a significant number of hydroxyl groups, the Ni–Al LDHs memristor exhibits remarkable sensitivity to changes in humidity. As the relative humidity level increases, a conspicuous decrease is observed in resistance of low resistance state, which attributed to the transition of protons facilitated by water. The humidity detection range of the Ni–Al LDHs memristor is from 30 RH% to 95 RH%, and it exhibits a sensitivity of 101.72 mV/RH. The Ni–Al LDHs memristor exhibits humidity sensitive resistive switching characteristics. In different humidity environments can produce a dynamic change between high and low resistance state switching. An artificial humidity sensing system by utilizing the unique resistance change behavior in Ni–Al LDHs memristor induced by humidity was demonstrated.

Keywords