European Physical Journal C: Particles and Fields (Feb 2022)

Punzi-loss:

  • F. Abudinén,
  • M. Bertemes,
  • S. Bilokin,
  • M. Campajola,
  • G. Casarosa,
  • S. Cunliffe,
  • L. Corona,
  • M. De Nuccio,
  • G. De Pietro,
  • S. Dey,
  • M. Eliachevitch,
  • P. Feichtinger,
  • T. Ferber,
  • J. Gemmler,
  • P. Goldenzweig,
  • A. Gottmann,
  • E. Graziani,
  • H. Haigh,
  • M. Hohmann,
  • T. Humair,
  • G. Inguglia,
  • J. Kahn,
  • T. Keck,
  • I. Komarov,
  • J.-F. Krohn,
  • T. Kuhr,
  • S. Lacaprara,
  • K. Lieret,
  • R. Maiti,
  • A. Martini,
  • F. Meier,
  • F. Metzner,
  • M. Milesi,
  • S.-H. Park,
  • M. Prim,
  • C. Pulvermacher,
  • M. Ritter,
  • Y. Sato,
  • C. Schwanda,
  • W. Sutcliffe,
  • U. Tamponi,
  • F. Tenchini,
  • P. Urquijo,
  • L. Zani,
  • R. Žlebčík,
  • A. Zupanc

DOI
https://doi.org/10.1140/epjc/s10052-022-10070-0
Journal volume & issue
Vol. 82, no. 2
pp. 1 – 8

Abstract

Read online

Abstract We present the novel implementation of a non-differentiable metric approximation and a corresponding loss-scheduling aimed at the search for new particles of unknown mass in high energy physics experiments. We call the loss-scheduling, based on the minimisation of a figure-of-merit related function typical of particle physics, a Punzi-loss function, and the neural network that utilises this loss function a Punzi-net. We show that the Punzi-net outperforms standard multivariate analysis techniques and generalises well to mass hypotheses for which it was not trained. This is achieved by training a single classifier that provides a coherent and optimal classification of all signal hypotheses over the whole search space. Our result constitutes a complementary approach to fully differentiable analyses in particle physics. We implemented this work using PyTorch and provide users full access to a public repository containing all the codes and a training example.