BMC Plant Biology (May 2007)

A set of multiplex panels of microsatellite markers for rapid molecular characterization of rice accessions

  • Alcochete António AN,
  • Beló André,
  • Pessoa-Filho Marco,
  • Rangel Paulo HN,
  • Ferreira Márcio E

DOI
https://doi.org/10.1186/1471-2229-7-23
Journal volume & issue
Vol. 7, no. 1
p. 23

Abstract

Read online

Abstract Background This study aimed to analyze the efficiency of three new microsatellite multiplex panels, which were designed to evaluate a total of 16 loci of the rice genome, based on single PCR reactions of each panel. A sample of 548 accessions of traditional upland rice landraces collected in Brazil in the last 25 years was genotyped, a database of allelic frequencies was established, estimates of genetic parameters were performed and analysis of genetic structure of the collection was developed. Results The three panels yielded a combined matching probability of 6.4 × 10-21, polymorphism information content (PIC) of 0.637, and a combined power of exclusion greater than 99.99%. A few samples presented a genetic background of indica rice. The 16 SSR loci produced a total of 229 alleles. Gene diversity values averaged 0.667, and PIC values averaged 0.637. Genetic structure analysis of the collection using a Bayesian approach detected three possible major clusters, with an overall FST value of 0.177. Important inputs on the knowledge about upland rice germplasm differentiations which happened in Brazil in the last few centuries were also achieved and are discussed. Conclusion The three multiplex panels described here represent a powerful tool for rice genetic analysis, offering a rapid and efficient option for rice germplasm characterization. The data gathered demonstrates the feasibility of genotyping extensive germplasm collections using panels of multiplexed microsatellite markers. It contributes to the advancement of research on large scale characterization and management of germplasm banks, as well as identification, protection and assessments of genetic relationship of rice germplasm.