Heliyon (Jan 2020)

Liquid chromatography method to assay tretinoin in skin layers: validation and application in skin penetration/retention studies

  • Dileusa de Oliveira,
  • Diego Fontana de Andrade,
  • Edilene Gadelha de Oliveira,
  • Ruy Carlos Ruver Beck

Journal volume & issue
Vol. 6, no. 1
p. e03098

Abstract

Read online

A liquid chromatography (LC) method for the quantification of tretinoin (TTN) in different matrices (adhesive tape, cotton and porcine skin layers, stratum corneum, viable epidermis, and dermis) was validated and applied in in vitro porcine skin penetration/retention studies. This study proposes, for the first time, a method for assaying TTN in separated porcine skin layers (stratum corneum, viable epidermis, and dermis). The skin studies were carried out using tape stripping and cutaneous retention techniques. The procedures for the extraction of TTN from dermatological formulations (creams and gels) and biological and non-biological matrices used with the tape stripping and retention techniques were also evaluated. The LC method consisted of a mobile phase composed of a mixture of methanol, water, and glacial acetic acid (85:15:1, v/v); a C18 column used as the stationary phase; a flow rate of 1.0 mL min−1; an injection volume of 100 μL; and TTN detection at 342 nm. The method was linear in the range of 0.05–15.00 μg mL−1 (r = 0.9999), and it was precise and accurate. The limit of detection (LOD) and limit of quantification (LOQ) were 0.0165 μg mL−1 and 0.0495 μg mL−1, respectively. TTN was extracted from different matrices, showing good precision [relative standard deviation (RSD) of <5%] and accuracy (89.4–113.9%). This method was successfully applied in the evaluation of TTN skin retention/permeation from dermatological formulations (cream and gel). A higher penetration of TTN through the skin was achieved with the gel rather than the cream, showing the influence of the dosage form. Therefore, the developed method can easily be applied in porcine skin penetration/retention studies of dermatological formulations containing TTN, and it is able to discriminate the behaviours of the different formulations.

Keywords