Annales Geophysicae (Dec 2002)
Estimating the contribution from different ionospheric regions to the TEC response to the solar flares using data from the international GPS network
Abstract
This paper proposes a new method for estimating the contribution from different ionospheric regions to the response of total electron content variations to the solar flare, based on data from the international network of two-frequency multichannel receivers of the navigation GPS system. The method uses the effect of partial "shadowing" of the atmosphere by the terrestrial globe. The study of the solar flare influence on the atmosphere uses GPS stations located near the boundary of the shadow on the ground in the nightside hemisphere. The beams between the satellite-borne transmitter and the receiver on the ground for these stations pass partially through the atmosphere lying in the region of total shadow, and partially through the illuminated atmosphere. The analysis of the ionospheric effect of a powerful solar flare of class X5.7/3B that was recorded on 14 July 2000 (10:24 UT, N22 W07) in quiet geomagnetic conditions (Dst = -10 nT) has shown that about 75% of the TEC increase corresponds to the ionospheric region lying below 300 km and about 25% to regions lying above 300 km.Key words. Ionosphere (solar radiation and cosmic ray effects; instruments and techniques) – Solar physics, astrophysics and astronomy (ultraviolet emissions)