BMC Genomics (May 2018)

Identification of usual interstitial pneumonia pattern using RNA-Seq and machine learning: challenges and solutions

  • Yoonha Choi,
  • Tiffany Ting Liu,
  • Daniel G. Pankratz,
  • Thomas V. Colby,
  • Neil M. Barth,
  • David A. Lynch,
  • P. Sean Walsh,
  • Ganesh Raghu,
  • Giulia C. Kennedy,
  • Jing Huang

DOI
https://doi.org/10.1186/s12864-018-4467-6
Journal volume & issue
Vol. 19, no. S2
pp. 147 – 159

Abstract

Read online

Abstract Background We developed a classifier using RNA sequencing data that identifies the usual interstitial pneumonia (UIP) pattern for the diagnosis of idiopathic pulmonary fibrosis. We addressed significant challenges, including limited sample size, biological and technical sample heterogeneity, and reagent and assay batch effects. Results We identified inter- and intra-patient heterogeneity, particularly within the non-UIP group. The models classified UIP on transbronchial biopsy samples with a receiver-operating characteristic area under the curve of ~ 0.9 in cross-validation. Using in silico mixed samples in training, we prospectively defined a decision boundary to optimize specificity at ≥85%. The penalized logistic regression model showed greater reproducibility across technical replicates and was chosen as the final model. The final model showed sensitivity of 70% and specificity of 88% in the test set. Conclusions We demonstrated that the suggested methodologies appropriately addressed challenges of the sample size, disease heterogeneity and technical batch effects and developed a highly accurate and robust classifier leveraging RNA sequencing for the classification of UIP.