Remote Sensing (Aug 2022)

Standoff Infrared Measurements of Chemical Plume Dynamics in Complex Terrain Using a Combination of Active Swept-ECQCL Laser Spectroscopy with Passive Hyperspectral Imaging

  • Mark C. Phillips,
  • Bruce E. Bernacki,
  • Patrick T. Conry,
  • Michael J. Brown

DOI
https://doi.org/10.3390/rs14153756
Journal volume & issue
Vol. 14, no. 15
p. 3756

Abstract

Read online

Chemical plume detection and modeling in complex terrain present numerous challenges. We present experimental results from outdoor releases of two chemical tracers (sulfur hexafluoride and Freon-152a) from different locations in mountainous terrain. Chemical plumes were detected using two standoff instruments collocated at a distance of 1.5 km from the plume releases. A passive long-wave infrared hyperspectral imaging system was used to show time- and space-resolved plume transport in regions near the source. An active infrared swept-wavelength external cavity quantum cascade laser system was used in a standoff configuration to measure quantitative chemical column densities with high time resolution and high sensitivity along a single measurement path. Both instruments provided chemical-specific detection of the plumes and provided complementary information over different temporal and spatial scales. The results show highly variable plume propagation dynamics near the release points, strongly dependent on the local topography and winds. Effects of plume stagnation, plume splitting, and plume mixing were all observed and are explained based on local topographic and wind conditions. Measured plume column densities at distances ~100 m from the release point show temporal fluctuations over ~1 s time scales and spatial variations over ~1 m length scales. The results highlight the need for high-speed and spatially resolved measurement techniques to provide validation data at the relevant spatial and temporal scales required for high-fidelity terrain-aware microscale plume propagation models.

Keywords