Анналы клинической и экспериментальной неврологии (Oct 2024)
Blood Glucocerebrosidase Activity and α-Synuclein Levels in Patients with GBA1-Associated Parkinson's Disease and Asymptomatic <i>GBA1</i> Mutation Carriers
Abstract
Introduction. Mutations in a GBA1 gene, which encodes a lysosomal enzyme called glucocerebrosidase (GCase), are the most common genetic risk factor for Parkinson's disease (PD). The pathogenesis of PD results from the death of dopaminergic neurons in the substantia nigra of the brain, which is associated with the aggregation of α-synuclein protein. However, not all GBA1 mutation carriers develop PD during their lifetime. The aim of this study was to evaluate GCase activity and α-synuclein levels in CD45+ blood cells of patients with PD associated with GBA1 mutations (GBА1-PD), asymptomatic carriers of GBA1 mutations (GBА1-carriers), and patients with sporadic PD (sPD), as well as correlation between the study parameters in the study groups. Materials and methods. The study included patients with GBА1-PD (n = 25) and sPD (n = 147), and GBА1-carriers (n = 16). A control group included healthy volunteers (n = 154). The level of α-synuclein in CD45+ cells was measured by enzyme-linked immunosorbent assay, and GCase activity in dried blood spots was detected by high-performance liquid chromatography with tandem mass spectrometry. Results. Increased level of α-synuclein protein was detected in CD45+ blood cells of patients with GBA1-PD, sPD, and GBA1-carriers compared to controls (p = 0.0043; p = 0.0002; p = 0.032, respectively). Decreased GCase activity was reported in GBA1-PD patients and GBA1-carriers compared to sPD patients (p = 0.0003; p = 0.003, respectively) and controls (p 0.0001; p 0.0001, respectively). However, negative correlation between α-synuclein levels and GCase activity was observed only in GBA1-PD patients, but not in GBA1-carriers. Conclusion. Our data suggest a possible functional relationship between the activity of GCase and the metabolism of α-synuclein in PD associated with GBA1 mutations.
Keywords