Energies (Oct 2012)

A Comparison of Wind Flow Models for Wind Resource Assessment in Wind Energy Applications

  • Mathieu Landry,
  • Yves Gagnon,
  • Nicolas Gasset

DOI
https://doi.org/10.3390/en5114288
Journal volume & issue
Vol. 5, no. 11
pp. 4288 – 4322

Abstract

Read online

The objective of this work was to assess the accuracy of various coupled mesoscale-microscale wind flow modeling methodologies for wind energy applications. This is achieved by examining and comparing mean wind speeds from several wind flow modeling methodologies with observational measurements from several 50 m met towers distributed across the study area. At the mesoscale level, with a 5 km resolution, two scenarios are examined based on the Mesoscale Compressible Community Model (MC2) model: the Canadian Wind Energy Atlas (CWEA) scenario, which is based on standard input data, and the CWEA High Definition (CWEAHD) scenario where high resolution land cover input data is used. A downscaling of the obtained mesoscale wind climate to the microscale level is then performed, where two linear microscale models, i.e., MsMicro and the Wind Atlas Analysis and Application Program (WAsP), are evaluated following three downscaling scenarios: CWEA-WAsP, CWEA-MsMicro and CWEAHD-MsMicro. Results show that, for the territory studied, with a modeling approach based on the MC2 and MsMicro models, also known as Wind Energy Simulation Toolkit (WEST), the use of high resolution land cover and topography data at the mesoscale level helps reduce modeling errors for both the mesoscale and microscale models, albeit only marginally. At the microscale level, results show that the MC2-WAsP modeling approach gave substantially better results than both MC2 and MsMicro modeling approaches due to tweaked meso-micro coupling.

Keywords