Applied Sciences (Nov 2023)
Dynamic Response and Damage Characteristics of Large Reinforced Concrete Slabs under Explosion
Abstract
To investigate the damage characteristics of reinforced concrete (RC) buildings during explosive incidents, a large RC slab (4 m × 5 m × 0.15 m) was meticulously designed, fabricated, and subjected to explosion experiments, which were complemented by comprehensive numerical simulations. The dynamic response parameters of the RC slabs under 0.5–1 kg TNT explosions were tested using polyvinylidene fluoride (PVDF) pressure sensors, displacement sensors, and acceleration sensors. The damage morphologies under 5–40 kg TNT explosions were investigated using ANSYS/LS–DYNA 17.0 software. The results show that, with an increase in TNT charge, the RC slab gradually showed minor damage (5 kg), moderate damage (10–20 kg), heavy damage (25 kg), and complete destruction (30–40 kg). For the 20 kg TNT explosion condition, a 1020 mm × 760 mm explosion crater appeared on the top surface, which was in agreement with the 934 mm × 906 mm explosion crater obtained from the simulation. Based on the results, suitable P–I (pressure–impulse) curves for the 4 m × 5 m × 0.15 m RC slab were established. The results can provide a reference for damage assessments of large-sized buildings during explosion accidents.
Keywords