IEEE Access (Jan 2024)
Optimizing Energy-Harvesting Hybrid VLC/RF Networks With Random Receiver Orientation
Abstract
This paper investigates an indoor hybrid visible light communication (VLC) and radio frequency (RF) scenario with two-hop downlink transmission. A light emitting diode (LED) transmits both data and energy via VLC to an energy-harvesting relay node, which then uses the harvested energy to retransmit the decoded information to an RF user in the second phase. The design parameters include the direct current (DC) bias and the time allocation for VLC transmission. We formulate an optimization problem to maximize the data rate under decode-and-forward relaying with fixed receiver orientation. The non-convex problem is decomposed into two sub-problems, solved iteratively by fixing one parameter while optimizing the other. Additionally, we analyze the impact of random receiver orientation on the data rate, deriving closed-form expressions for both VLC and RF rates. An exhaustive search approach is employed to solve the optimization, demonstrating that joint optimization of DC bias and time allocation significantly enhances the data rate compared to optimizing DC bias alone.
Keywords