BMC Genomics (Feb 2024)
An insight into the gene expression evolution in Gossypium species based on the leaf transcriptomes
Abstract
Abstract Background Gene expression pattern is associated with biological phenotype and is widely used in exploring gene functions. Its evolution is also crucial in understanding species speciation and divergence. The genus Gossypium is a bona fide model for studying plant evolution and polyploidization. However, the evolution of gene expression during cotton species divergence has yet to be extensively discussed. Results Based on the seedling leaf transcriptomes, this work analyzed the transcriptomic content and expression patterns across eight cotton species, including six diploids and two natural tetraploids. Our findings indicate that, while the biological function of these cotton transcriptomes remains largely conserved, there has been significant variation in transcriptomic content during species divergence. Furthermore, we conducted a comprehensive analysis of expression distances across cotton species. This analysis lends further support to the use of G. arboreum as a substitute for the A-genome donor of natural cotton polyploids. Moreover, our research highlights the evolution of stress-responsive pathways, including hormone signaling, fatty acid degradation, and flavonoid biosynthesis. These processes appear to have evolved under lower selection pressures, presumably reflecting their critical role in the adaptations of the studied cotton species to diverse environments. Conclusions In summary, this study provided insights into the gene expression variation within the genus Gossypium and identified essential genes/pathways whose expression evolution was closely associated with the evolution of cotton species. Furthermore, the method of characterizing genes and pathways under unexpected high or slow selection pressure can also serve as a new strategy for gene function exploration.
Keywords