Biomedicines (Jun 2024)

Ursodeoxycholic Acid Modulates the Interaction of miR-21 and Farnesoid X Receptor and NF-κB Signaling

  • Chi-Yi Peng,
  • Yi-Chun Liao,
  • Yi-Chin Yang,
  • Yi-Wen Hung,
  • Lan-Ru Huang,
  • Yen-Chun Peng

DOI
https://doi.org/10.3390/biomedicines12061236
Journal volume & issue
Vol. 12, no. 6
p. 1236

Abstract

Read online

(1) Background: This study investigates the effects of Ursodeoxycholic acid (UDCA) on NF-κB signaling, farnesoid X receptor (FXR) singling, and microRNA-21 in HepG2 cells. (2) Methods: HepG2 cells were treated with lipopolysaccharide (LPS) to simulate hepatic inflammation. The investigation focused on the expression of NF-κB activation, which was analyzed using Western blot, confocal microscopy, and Electrophoretic Mobility-shift Assays (EMSA). Additionally, NF-κB and farnesoid X receptor (FXR) singling expressions of micro-RNA-21, COX-2, TNF-α, IL-6, cyp7A1, and shp were assessed by RT-PCR. (3) Results: UDCA effectively downregulated LPS-induced expressions of NF-κB/65, p65 phosphorylation, and also downregulated FXR activity by Western blot. Confocal microscopy and EMSA results confirmed UDCA’s role in modulating NF-κB signaling. UDCA reduced the expressions of LPS-induced COX-2, TNF-α, and IL-6, which were related to NF-κB signaling. UDCA downregulated LPS-induced cyp7A1 gene expression and upregulated shp gene expression, demonstrating selective gene regulation via FXR. UDCA also significantly decreased micro-RNA 21 levels. (4) Conclusions: This study demonstrates UDCA’s potent anti-inflammatory effects on NF-κB and FXR signaling pathways, and thus its potential to modulate hepatic inflammation and carcinogenesis through interactions with NF-κB and FXR. The decrease in micro-RNA 21 expression further underscores its therapeutic potential.

Keywords