Atmosphere (Nov 2021)

Monitoring Rainwater Properties and Outdoor Particulate Matter in a Former Steel Manufacturing City in Romania

  • Daniel Dunea,
  • Virgil Iordache,
  • Loredana Neagu Frasin,
  • Aurora Neagoe,
  • Laurentiu Predescu,
  • Stefania Iordache

DOI
https://doi.org/10.3390/atmos12121594
Journal volume & issue
Vol. 12, no. 12
p. 1594

Abstract

Read online

Wet deposition is influencing air quality because air pollutants are washed away from the surrounding air. Consequently, particulate matter and associated compounds are transported in the rainwater and enter into soil, surface waters, and groundwater. Nonpoint sources of heavy metals from stormwater runoff have increased in urban areas due to industrialization and the increasing impervious surfaces. In this work, we present an assessment of the rainwater composition regarding the nutrients and other physicochemical characteristics measured in three locations selected in Targoviste city, Romania, a city that had a specialized steel factory and important metallurgical facilities. The rainwater was collected using three PALMEX rain samplers and then was transferred to high-density polyethylene bottles and analyzed using ICP-MS. PM2.5 concentrations were also monitored continuously using optical monitors calibrated using a gravimetric sampler. A detailed analysis of the heavy metals content in rainwater and PM was presented for the pollution episodes occurring in October and November 2019. Backward trajectories were computed using the HYSPLIT model for these periods. The results showed that the PM2.5 ranged from 11.1 to 24.1 μg/m3 in 2019, while the heavy metals in collected rainwater were (µg L−1): 0.25 (Cd) − CV = 26.5%, 0.10 (Co) − CV = 58.1%, 1.77 (Cr) − CV = 24.3%, 377.37 (Ni) − CV = 27.9%, 0.67 (Pb) − CV = 74.3%, and 846.5 (Zn) − CV = 20.6%. Overall, Ni, Pb, Cr, and V had significant correlations between the concentrations from rainwater and PM. Negative associations were found between precipitation events and heavy metals both from rainwater and PM, but only a few showed statistical significance. However, this could explain the “washing” effect of the rain on the heavy metals from PM2.5. The potential sources of nitrogen in the rainwater collected in Targoviste could be from burning fossil fuels and the soils, including both biological processes and fertilization resulting from the intensive agriculture in the piedmont plain in which the city is located. Based on the results, rainwater monitoring can constitute a reliable method for air quality characterization. Additional research is required to better understand seasonality and sources of heterogeneity regarding the associations between PM and rainwater composition.

Keywords