Scientific Drilling (Apr 2021)

Composite development and stratigraphy of the Onepoto maar lake sediment sequence (Auckland Volcanic Field, New Zealand)

  • B. Läuchli,
  • P. C. Augustinus,
  • L. Peti,
  • J. L. Hopkins

DOI
https://doi.org/10.5194/sd-29-19-2021
Journal volume & issue
Vol. 29
pp. 19 – 37

Abstract

Read online

The accurate and precise reconstruction of Quaternary climate as well as the events that punctuate it is an important driver of the study of lake sediment archives. However, until recently lake sediment-based palaeoclimate reconstructions have largely concentrated on Northern Hemisphere lake sequences due to a scarcity of continuous and high-resolution lake sediment sequences from the Southern Hemisphere, especially from the southern mid-latitudes. In this context, the deep maar lakes of the Auckland Volcanic Field of northern New Zealand are significant as several contain continuous and well-laminated sediment sequences. Onepoto Basin potentially contains the longest temporal lake sediment record from the Auckland Volcanic Field (AVF), spanning from Marine Isotope Stage 6e (MIS 6e) to the early Holocene when lacustrine sedimentation was terminated by marine breach of the south-western crater tuff ring associated with post-glacial sea-level rise. The Onepoto record consists of two new, overlapping cores spanning ca. 73 m combined with archive material in a complete composite stratigraphy. Tephrochronology and 14C dating provide the fundamental chronological framework for the core, with magnetic relative palaeo-intensity variability downcore, and meteoric 10Be influx into the palaeolake to refine the chronology. The µ-XRF (micro X-ray fluorescence) downcore variability for the entirety of the lake sediment sequence has been established with measurement of a range of proxies for climate currently underway. This work will produce the first continuous record of the last 200 kyr of palaeoclimate from northern New Zealand to date.