Scientific Reports (Jan 2021)

α-MSH-induced activation of spinal MC1R but not MC4R enhances colorectal motility in anaesthetised rats

  • Hiromi H. Ueda,
  • Kiyotada Naitou,
  • Hiroyuki Nakamori,
  • Kazuhiro Horii,
  • Takahiko Shiina,
  • Tatsunori Masatani,
  • Mitsuya Shiraishi,
  • Yasutake Shimizu

DOI
https://doi.org/10.1038/s41598-020-80020-x
Journal volume & issue
Vol. 11, no. 1
pp. 1 – 9

Abstract

Read online

Abstract The central nervous system is involved in regulation of defaecation. It is generally considered that supraspinal regions control the spinal defaecation centre. However, signal transmission from supraspinal regions to the spinal defaecation centre is still unclear. In this study, we investigated the regulatory role of an anorexigenic neuropeptide, α-MSH, in the spinal defaecation centre in rats. Intrathecal administration of α-MSH to the L6-S1 spinal cord enhanced colorectal motility. The prokinetic effect of α-MSH was abolished by severing the pelvic nerves. In contrast, severing the colonic nerves or thoracic cord transection at the T4 level had no impact on the effect of α-MSH. RT-PCR analysis revealed MC1R mRNA and MC4R mRNA expression in the L6-S1 spinal cord. Intrathecally administered MC1R agonists, BMS470539 and SHU9119, mimicked the α-MSH effect, but a MC4R agonist, THIQ, had no effect. These results demonstrate that α-MSH binds to MC1R in the spinal defaecation centre and activates pelvic nerves, leading to enhancement of colorectal motility. This is, to our knowledge, the first report showing the functional role of α-MSH in the spinal cord. In conclusion, our findings suggest that α-MSH is a candidate for a neurotransmitter from supraspinal regions to the spinal defaecation centre.