PLoS ONE (Jan 2021)
Nutritional, physicochemical and sensorial acceptance of functional cookies enriched with xiquexique (Pilosocereus gounellei) flour
Abstract
The objective of this study was the production of innovative functional cookies enriched with two different sizes (100 and 28 mesh) xiquexique flour by substitution ratio 50% of wheat flour and monitoring the impact of these enrichments on the nutritional, physicochemical, texture characteristics and consumer acceptance. The physicochemical characteristics and sensorial properties of the xiquexique cookies were evaluated in a pursuit to identify an innovative bakery ingredient with high nutritional value and potential function that could be exploited by the food industry. The water activity and moisture values were low, which can provide greater stability during storage of food matrices, such as cookies. The xiquexique cookies had greater ash (2.47–2.74%), protein (0.94–1.36%), fiber (4.41–8.10%), and resistant starch (3.65–2.10%) contents than their respective controls with 100% wheat flour. The functional cookies were rich in minerals: mainly calcium, iron, potassium, magnesium and manganese and can be consumed by all individuals to help meet daily needs, especially those of people who have increased needs for these essential nutrients. In addition to the darker color of the xiquexique cookies, the hardness of these was higher than that of the control cookies, while the expansion index was smaller. The data from the Check All That Apply sensory method, which consists of a test used mainly for recipe adjustments and the development of ideal food products, confirmed that xiquexique flour have the potential for the development of bakery products such as cookies.