Energies (May 2023)

Numerical Investigation of the Use of Electrically Conductive Concrete-Encased Electrodes as Potential Replacement for Substation Grounding Systems

  • Mouna Daadaa,
  • Stephan Brettschneider,
  • Christophe Volat,
  • Guy Simard

DOI
https://doi.org/10.3390/en16114410
Journal volume & issue
Vol. 16, no. 11
p. 4410

Abstract

Read online

This paper presents a numerical investigation regarding the possibility of using electrically conductive concrete (ECON) combined with concrete-encased electrode (CEE) technology to develop new substation grounding systems (SGSs) called ECON-EE as a replacement for conventional copper or galvanized steel grounding grids. In the first step, the validation of the commercial FEM software used to perform grounding system analysis was performed in terms of the grid resistance (RG), ground potential rise (GPR), and step and touch voltages, using a symmetrical 70 m × 70 m conventional copper SGS. Next, several numerical simulations of an ECON-EE grounding system with the same dimensions as the conventional copper grid used for FEM software validation were performed. Thus, several parameters of the ECON-EE grounding system were studied, such as the geometry, dimensions, and resistivity of ECON and the diameter of the rebar. The numerical results obtained permit us to demonstrate that ECON-EE grounding systems can perform better than conventional SGSs equipped with vertical rods, particularly in the case of high ground resistivity. Moreover, it was demonstrated that the two main ECON-EE parameters affecting the grounding resistance and the touch and step voltages are the section area and the resistivity of the ECON. As discussed in detail in this paper, the proposed ECON-EE grounding system can offer several advantages compared to conventional SGSs in terms of efficiency and durability, as well as in terms of simplicity of conception and implementation.

Keywords