Diagnostics (Dec 2023)
Diagnostic Performance of Magnetic Resonance Imaging for Parathyroid Localization of Primary Hyperparathyroidism: A Systematic Review
Abstract
Accurate preoperative localization is crucial for successful minimally invasive parathyroidectomy in primary hyperparathyroidism (PHPT). Preoperative localization can be challenging in patients with recurrent and/or multigland disease (MGD). This has led clinicians to investigate multiple imaging techniques, most of which are associated with radiation exposure. Magnetic resonance imaging (MRI) offers ionizing radiation-free and accurate imaging, making it an attractive alternative imaging modality. The objective of this systematic review is to provide an overview of the diagnostic performance of MRI in the localization of PHPT. PubMed and Embase libraries were searched from 1 January 2000 to 31 March 2023. Studies were included that investigated MRI techniques for the localization of PHPT. The exclusion criteria were (1) secondary/tertiary hyperparathyroidism, (2) studies that provided no diagnostic performance values, (3) studies published before 2000, and (4) studies using 0.5 Tesla MRI scanners. Twenty-four articles were included in the systematic review, with a total of 1127 patients with PHPT. In 14 studies investigating conventional MRI for PHPT localization, sensitivities varied between 39.1% and 94.3%. When employing more advanced MRI protocols like 4D MRI for PHPT localization in 11 studies, sensitivities ranged from 55.6% to 100%. The combination of MR imaging with functional techniques such as 18F-FCH-PET/MRI yielded the highest diagnostic accuracy, with sensitivities ranging from 84.2% to 100% in five studies. Despite the limitations of the available evidence, the results of this review indicate that the combination of MR imaging with functional imaging techniques such as 18F-FCH-PET/MRI yielded the highest diagnostic accuracy. Further research on emerging MR imaging modalities, such as 4D MRI and PET/MRI, is warranted, as MRI exposes patients to minimal or no ionizing radiation compared to other imaging modalities.
Keywords