Journal of Low Frequency Noise, Vibration and Active Control (Jun 2022)

A heuristic review on the homotopy perturbation method for non-conservative oscillators

  • Chun-Hui He,
  • Yusry O El-Dib

DOI
https://doi.org/10.1177/14613484211059264
Journal volume & issue
Vol. 41

Abstract

Read online

The homotopy perturbation method (HPM) was proposed by Ji-Huan. He was a rising star in analytical methods, and all traditional analytical methods had abdicated their crowns. It is straightforward and effective for many nonlinear problems; it deforms a complex problem into a linear system; however, it is still developing quickly. The method is difficult to deal with non-conservative oscillators, though many modifications have appeared. This review article features its last achievement in the nonlinear vibration theory with an emphasis on coupled damping nonlinear oscillators and includes the following categories: (1) Some fallacies in the study of non-conservative issues; (2) non-conservative Duffing oscillator with three expansions; (3)the non-conservative oscillators through the modified homotopy expansion; (4) the HPM for fractional non-conservative oscillators; (5) the homotopy perturbation method for delay non-conservative oscillators; and (6) quasi-exact solution based on He’s frequency formula. Each category is heuristically explained by examples, which can be used as paradigms for other applications. The emphasis of this article is put mainly on Ji-Huan He’s ideas and the present authors’ previous work on the HPM, so the citation might not be exhaustive.