Frontiers in Physics (Feb 2014)
Programmable ferroelectric tunnel memristor
Abstract
We report an analogously programmable memristor based on genuine electronic resistive switching combining ferroelectric switching and electron tunneling. The tunnel current through an 8 unit cell thick epitaxial Pb(Zr[0.2]Ti[0.8])O[3] film sandwiched between La[0.7]Sr[0.3]MnO[3] and cobalt electrodes obeys the Kolmogorov-Avrami-Ishibashi model for bidimensional growth with a characteristic switching time in the order of 10^-7 seconds. The analytical description of switching kinetics allows us to develop a characteristic transfer function that has only one parameter viz. the characteristic switching time and fully predicts the resistive states of this type of memristor.
Keywords