PLoS ONE (Jan 2013)
West Nile virus infection in American Robins: new insights on dose response.
Abstract
West Nile virus (WNV) is a vector-borne pathogen that was first detected in the United States in 1999. The natural transmission cycle of WNV involves mosquito vectors and avian hosts, which vary in their competency to transmit the virus. American robins are an abundant backyard species in the United States and appear to have an important role in the amplification and dissemination of WNV. In this study we examine the response of American robins to infection with various WNV doses within the range of those administered by some natural mosquito vectors. Thirty American robins were assigned a WNV dosage treatment and needle inoculated with 10(0.95) PFU, 10(1.26) PFU, 10(2.15) PFU, or 10(3.15) PFU. Serum samples were tested for the presence of infectious WNV and/or antibodies, while oral swabs were tested for the presence of WNV RNA. Five of the 30 (17%) robins had neutralizing antibodies to WNV prior to the experiment and none developed viremia or shed WNV RNA. The proportion of WNV-seronegative birds that became viremic after WNV inoculation increased in a dose dependent manner. At the lowest dose, only 40% (2/5) of the inoculated birds developed productive infections while at the highest dose, 100% (7/7) of the birds became viremic. Oral shedding of WNV RNA followed a similar trend where robins inoculated with the lower two doses were less likely to shed viral RNA (25%) than robins inoculated with one of the higher doses (92%). Viremia titers and morbidity did not increase in a dose dependent manner; only two birds succumbed to infection and, interestingly, both were inoculated with the lowest dose of WNV. It is clear that the disease ecology of WNV is a complex interplay of hosts, vectors, and viral dose delivered.