Micromachines (Dec 2019)
Design of a Compliant Mechanism Based Four-Stage Amplification Piezoelectric-Driven Asymmetric Microgripper
Abstract
The existing symmetrical microgrippers have larger output displacements compared with the asymmetrical counterparts. However, the two jaws of a symmetrical microgripper are less unlikely to offer the same forces on the two sides of a grasped micro-object due to the manufacture and assembly errors. Therefore, this paper proposes a new asymmetric microgripper to obtain stable output force of the gripper. Compared with symmetrical microgrippers, asymmetrical microgrippers usually have smaller output displacements. In order to increase the output displacement, a compliant mechanism with four stage amplification is employed to design the asymmetric microgripper. Consequently, the proposed asymmetrical microgripper possesses the advantages of both the stable output force of the gripper and large displacement amplification. To begin with, the mechanical model of the microgripper is established in this paper. The relationship between the driving force and the output displacement of the microgripper is then derived, followed by the static characteristics’ analysis of the microgripper. Furthermore, finite element analysis (FEA) of the microgripper is also performed, and the mechanical structure of the microgripper is optimized based on the FEA simulations. Lastly, experimental tests are carried out, with a 5.28% difference from the FEA results and an 8.8% difference from the theoretical results. The results from theoretical calculation, FEA simulations, and experimental tests verify that the displacement amplification ratio and the maximum gripping displacement of the microgripper are up to 31.6 and 632 μm, respectively.
Keywords