Scientific Reports (Sep 2024)
Practical feature filter strategy to machine learning for small datasets in chemistry
Abstract
Abstract Many potential use cases for machine learning in chemistry and materials science suffer from small dataset sizes, which demands special care for the model design in order to deliver reliable predictions. Hence, feature selection as the key determinant for dataset design is essential here. We propose a practical and efficient feature filter strategy to determine the best input feature candidates. We illustrate this strategy for the prediction of adsorption energies based on a public dataset and sublimation enthalpies using an in-house training dataset. The input of adsorption energies reduces the feature space from 12 dimensions to two and still delivers accurate results. For the sublimation enthalpies, three input configurations are filtered from 14 possible configurations with different dimensions for further productive predictions as being most relevant by using our feature filter strategy. The best extreme gradient boosting regression model possesses a good performance and is evaluated from statistical and theoretical perspectives, reaching a level of accuracy comparable to density functional theory computations and allowing for physical interpretations of the predictions. Overall, the results indicate that the feature filter strategy can help interdisciplinary scientists without rich professional AI knowledge and limited computational resources to establish a reliable small training dataset first, which may make the final machine learning model training easier and more accurate, avoiding time-consuming hyperparameter explorations and improper feature selection.