Entropy (Aug 2022)
Improving Network Representation Learning via Dynamic Random Walk, Self-Attention and Vertex Attributes-Driven Laplacian Space Optimization
Abstract
Network data analysis is a crucial method for mining complicated object interactions. In recent years, random walk and neural-language-model-based network representation learning (NRL) approaches have been widely used for network data analysis. However, these NRL approaches suffer from the following deficiencies: firstly, because the random walk procedure is based on symmetric node similarity and fixed probability distribution, the sampled vertices’ sequences may lose local community structure information; secondly, because the feature extraction capacity of the shallow neural language model is limited, they can only extract the local structural features of networks; and thirdly, these approaches require specially designed mechanisms for different downstream tasks to integrate vertex attributes of various types. We conducted an in-depth investigation to address the aforementioned issues and propose a novel general NRL framework called dynamic structure and vertex attribute fusion network embedding, which firstly defines an asymmetric similarity and h-hop dynamic random walk strategy to guide the random walk process to preserve the network’s local community structure in walked vertex sequences. Next, we train a self-attention-based sequence prediction model on the walked vertex sequences to simultaneously learn the vertices’ local and global structural features. Finally, we introduce an attributes-driven Laplacian space optimization to converge the process of structural feature extraction and attribute feature extraction. The proposed approach is exhaustively evaluated by means of node visualization and classification on multiple benchmark datasets, and achieves superior results compared to baseline approaches.
Keywords