Heliyon (Jan 2020)
The effect of two formulations of carbon enterosorbents on oxidative stress indexes and molecular conformation of serum albumin in experimental animals exposed to CCl4
Abstract
The liver failure means inability to perform its normal synthetic, biotransformation and excretory functions. The disturbance of metabolic processes leads to the development of ''metabolic endogenous intoxication'' resulting in oxidative stress. Oxidative stress initiates the processes of oxidation of amino acid residues of blood plasma proteins causing the changes in their structure and functions. The effect of administration of highly activated porous carbonic enterosorbents on oxidative stress manifestations and molecular conformation of serum albumin in blood of experimental animals with acute liver failure induced by carbon tetrachloride (CCl4) needs to be investigated. Two forms of activated carbonic enterosorbents such as AC1 (primary beads with the range of diameters of 125–250 μm) and AC2 (secondary granules prepared from micronized AC1 having the mean particle size of ~1 μm) derived from phenol-formaldehyde resin were used in rat model with CCl4 intoxication. The total level of reactive oxygen species (ROS) in blood plasma, the activity of catalase (CAT) in blood hemolysates; the content of reduced glutathione (GSH) in liver homogenates, and the level of oxidative modification of proteins (OMP) such as aldehyde-dinitrophenylhydrazone (A-DNPH) and ketone-dinitrophenylhydrazone (K-DNPH) derivatives in blood plasma and liver homogenates were determined. In addition, the level of pro/antioxidant ratio in blood hemolysates and the content of lipid peroxidation product - malondialdehyde (MDA), in blood plasma and liver were determined. Melting thermograms of blood plasma proteins (BPP) and molecular conformation changes of serum albumin were analyzed by biophysical methods (differential scanning microcalorimetry and spectrofluorimetry). The extent of CCl4-induced oxidative damage in blood and liver of experimental animals was shown to be less expressed for AC1 in comparison with AC2 enterosorbent. However, AC2 used in the form of secondary granules positively influenced some biophysical properties of albumin molecule (temperature of melting, shape of melting endotherm and intrinsic fluorescence) after rats exposure to CCl4. In general, administration of both AC1 and AC2 led to the reduction of oxidative stress manifestations and partial restoration of native molecular conformation of serum albumin. These observations are promising in terms of achieving recovery of detoxification potential of organism after severe liver injury.