Journal of Translational Medicine (Apr 2023)

Identification of serum exosomal metabolomic and proteomic profiles for remote ischemic preconditioning

  • Yang Du,
  • Rui Qiu,
  • Lei Chen,
  • Yuewen Chen,
  • Zhifeng Zhong,
  • Peng Li,
  • Fangcheng Fan,
  • Yong Cheng

DOI
https://doi.org/10.1186/s12967-023-04070-1
Journal volume & issue
Vol. 21, no. 1
pp. 1 – 11

Abstract

Read online

Abstract Background Remote ischemic preconditioning (RIPC) refers to a brief episode of exposure to potential adverse stimulation and prevents injury during subsequent exposure. RIPC has been shown to increase tolerance to ischemic injury and improve cerebral perfusion status. Exosomes have a variety of activities, such as remodeling the extracellular matrix and transmitting signals to other cells. This study aimed to investigate the potential molecular mechanism of RIPC-mediated neuroprotection. Methods Sixty adult male military personnel participants were divided into the control group (n = 30) and the RIPC group (n = 30). We analyzed the differential metabolites and proteins in the serum exosomes of RIPC participants and control subjects. Results Eighty-seven differentially expressed serum exosomal metabolites were found between the RIPC and control groups, which were enriched in pathways related to tyrosine metabolism, sphingolipid metabolism, serotonergic synapses, and multiple neurodegeneration diseases. In addition, there were 75 differentially expressed exosomal proteins between RIPC participants and controls, which involved the regulation of insulin-like growth factor (IGF) transport, neutrophil degranulation, vesicle-mediated transport, etc. Furthermore, we found differentially expressed theobromine, cyclo gly-pro, hemopexin (HPX), and apolipoprotein A1 (ApoA1), which are associated with neuroprotective benefits in ischemia/reperfusion injury. In addition, five potential metabolite biomarkers, including ethyl salicylate, ethionamide, piperic acid, 2, 6-di-tert-butyl-4-hydroxymethylphenol and zerumbone, that separated RIPC from control individuals were identified. Conclusion Our data suggest that serum exosomal metabolites are promising biomarkers for RIPC, and our results provide a rich dataset and framework for future analyses of cerebral ischemia‒reperfusion injury under ischemia/reperfusion conditions.

Keywords