Sensors (Dec 2021)

A Three-Dimensional Integrated Non-Linear Coordinate Control Framework for Combined Yaw- and Roll-Stability Control during Tyre Blow-Out

  • Boyuan Li,
  • Chao Huang,
  • Yang Wu,
  • Bangji Zhang,
  • Haiping Du

DOI
https://doi.org/10.3390/s21248328
Journal volume & issue
Vol. 21, no. 24
p. 8328

Abstract

Read online

A tyre blow-out can greatly affect vehicle stability and cause serious accidents. In the literature, however, studies on comprehensive three-dimensional vehicle dynamics modelling and stability control strategies in the event of a sudden tyre blow-out are seriously lacking. In this study, a comprehensive 14 degrees-of-freedom (DOF) vehicle dynamics model is first proposed to describe the vehicle yaw-plane and roll-plane dynamics performance after a tyre blow-out. Then, based on the proposed 14 DOF dynamics model, an integrated control framework for a combined yaw plane and roll-plane stability control is presented. This integrated control framework consists of a vehicle state predictor, an upper-level control mode supervisor and a lower-level 14 DOF model predictive controller (MPC). The state predictor is designed to predict the vehicle’s future states, and the upper-level control mode supervisor can use these future states to determine a suitable control mode. After that, based on the selected control mode, the lower-level MPC can control the individual driving actuator to achieve the combined yaw plane and roll plane control. Finally, a series of simulation tests are conducted to verify the effectiveness of the proposed control strategy.

Keywords