Entropy (Jan 2022)
Joint Optimization of Data Freshness and Fidelity for Selection Combining-Based Transmissions
Abstract
Motivated by big data applications in the Internet of Things (IoT), abundant information arrives at the fusion center (FC) waiting to be processed. It is of great significance to ensure data freshness and fidelity simultaneously. We consider a wireless sensor network (WSN) where several sensor nodes observe one metric and then transmit the observations to the FC using a selection combining (SC) scheme. We adopt the age of information (AoI) and minimum mean square error (MMSE) metrics to measure the data freshness and fidelity, respectively. Explicit expressions of average AoI and MMSE are derived. After that, we jointly optimize the two metrics by adjusting the number of sensor nodes. A closed-form sub-optimal number of sensor nodes is proposed to achieve the best freshness and fidelity tradeoff with negligible errors. Numerical results show that using the proposed node number designs can effectively improve the freshness and fidelity of the transmitted data.
Keywords