Molecules (Jan 2024)
Uncovering the Anti-Angiogenic Mechanisms of <i>Centella asiatica</i> via Network Pharmacology and Experimental Validation
Abstract
Background: Centella asiatica (CA) has been used to address cancer for centuries in traditional Chinese medicine (TCM). Previous studies demonstrated its anti-angiogenesis efficacy, but the underlying mechanism of its action remains to be further clarified. This study aims to investigate the underlying mechanisms of CA and its triterpenes in anti-angiogenesis for cancer therapeutics through network pharmacology and experimental validation. Methods: Cytoscape was used to construct a network of compound–disease targets and protein–protein interactions (PPIs) from which core targets were identified. GO and KEGG analyses were performed using Metascape, and the AutoDock-Vina program was used to realize molecular docking for further verification. Then, VEGF165 was employed to establish an induced angiogenesis model. The anti-angiogenic effects of CA were evaluated through assays measuring cell proliferation, migration, and tubular structure formation. Results: Twenty-five active ingredients in CA had potential targets for anti-angiogenesis including madecassoside, asiaticoside, madecassic acid, asiatic acid, and asiaticoside B. In total, 138 potential targets for CA were identified, with 19 core targets, including STAT3, SRC, MAPK1, and AKT1. A KEGG analysis showed that CA is implicated in cancer-related pathways, specifically PD-1 and AGE-RAGE. Molecular docking verified that the active components of CA have good binding energy with the first four important targets of angiogenesis. In experimental validation, the extracts and triterpenes of CA improved VEGF165-induced angiogenesis by reducing the proliferation, migration, and tube formation of human umbilical vein endothelial cells (HUVECs). Conclusions: Our results initially demonstrate the effective components and great anti-angiogenic activity of CA. Evidence of the satisfactory anti-angiogenic action of the extracts and triterpenes from CA was verified, suggesting CA’s significant potential as a prospective agent for the therapy of cancer.
Keywords