Batteries (May 2023)

Controlling the Molar Ratios of Cation to Anion of Precursors for High Performance Capacitive Properties of MnO<sub>2</sub> Hybridized Carbon-Based Materials Electrode

  • Wein-Duo Yang,
  • Yi-Rong Chou,
  • Cheng-Ching Kuo,
  • Yu-Min Kang

DOI
https://doi.org/10.3390/batteries9050273
Journal volume & issue
Vol. 9, no. 5
p. 273

Abstract

Read online

Controlling the cation to anion (Mn2+/MnO4−) molar ratios of the precursors was used to obtain a highly performance capacitive properties of nanostructural MnO2 hybridized carbon-based materials on nickel foam (NF) through successive ionic layer adsorption and reaction technology. SEM, XRD, BET, and XPS analyses are utilized to investigate the influence of cation/anion molar ratios of precursors on the as-obtained MnO2 electrode materials. At a lower molar ratio of cation/anion of 1, the prepared manganese oxide deposited on the NF with obvious δ-MnO2 phase. The average pore size distribution of BET analysis of the as-obtained δ-MnO2 is about 4.6 nm, the specific surface area is 155.7 m2 g−1, exhibiting a mesoporous structure. However, when the molar ratio of cation/anion is higher than 5, the deposited film produced by the reaction exhibits a γ-MnO2 crystal phase. The capacitance of δ-MnO2/NF electrode is 280 F g−1 at 1 A g−1 in a 1 M Na2SO4 aqueous electrolyte solution. In addition, reduced graphene oxide (rGO) mixed with multi-wall carbon nanotube (MWCNT) was added to synthesize γ-MnO2/rGO-MWCNT/NF electrode, which has a high capacitance of 377.4 F g−1 under the charge/discharge current density at 1 A g−1.

Keywords