Geo-spatial Information Science (Jan 2019)

Estimation of crowd density from UAVs images based on corner detection procedures and clustering analysis

  • Ali Almagbile

DOI
https://doi.org/10.1080/10095020.2018.1539553
Journal volume & issue
Vol. 22, no. 1
pp. 23 – 34

Abstract

Read online

With rapid developments in platforms and sensors technology in terms of digital cameras and video recordings, crowd monitoring has taken a considerable attentions in many disciplines such as psychology, sociology, engineering, and computer vision. This is due to the fact that, monitoring of the crowd is necessary to enhance safety and controllable movements to minimize the risk particularly in highly crowded incidents (e.g. sports). One of the platforms that have been extensively employed in crowd monitoring is unmanned aerial vehicles (UAVs), because UAVs have the capability to acquiring fast, low costs, high-resolution and real-time images over crowd areas. In addition, geo-referenced images can also be provided through integration of on-board positioning sensors (e.g. GPS/IMU) with vision sensors (digital cameras and laser scanner). In this paper, a new testing procedure based on feature from accelerated segment test (FAST) algorithms is introduced to detect the crowd features from UAV images taken from different camera orientations and positions. The proposed test started with converting a circle of 16 pixels surrounding the center pixel into a vector and sorting it in ascending/descending order. A single pixel which takes the ranking number 9 (for FAST-9) or 12 (for FAST-12) was then compared with the center pixel. Accuracy assessment in terms of completeness and correctness was used to assess the performance of the new testing procedure before and after filtering the crowd features. The results show that the proposed algorithms are able to extract crowd features from different UAV images. Overall, the values of Completeness range from 55 to 70 % whereas the range of correctness values was 91 to 94 %.

Keywords