Frontiers in Materials (Sep 2024)
Structure characteristics and microwave dielectric properties of ZnZrNb2O8 oxide ceramics
Abstract
This study investigates the synthesis, structural analysis, and microwave dielectric characteristics of ZnZrNb2O8 ceramics, prepared via solid-state reaction method and subjected to sintering at temperatures ranging from 1,000°C to 1,200°C for 4 h. X-ray diffraction (XRD) analysis confirms the successful formation of ZnZrNb2O8 phase, with a monoclinic wolframite phase. Scanning electron microscopy (SEM) investigations unveil microstructural features such as grain size and porosity, reveals material’s morphological details. Dielectric properties conducted in the microwave frequency regime show a correlation between dielectric constant (εr) and relative density of the ceramics. Importantly, the ceramics exhibited a suitable dielectric constant and low dielectric loss, indicative of their suitability for microwave applications. Remarkably, ZnZrNb2O8 ceramics sintered at 1,150°C for 4 h exhibit excellent microwave dielectric properties (εr = 27.2, Q × f = 54,500 GHz, and τf = −60 ppm/°C). These findings underscore the potential of ZnZrNb2O8 ceramics as advanced materials for high-frequency applications, including filters, resonators, and other microwave devices, thus contributing significantly to the advancement of next-generation telecommunications technologies.
Keywords