Journal of Medical Internet Research (Nov 2013)
Comparison of US Panel Vendors for Online Surveys
Abstract
BackgroundDespite the increasing use of panel surveys, little is known about the differences in data quality across panels. ObjectiveThe aim of this study was to characterize panel survey companies and their respondents based on (1) the timeliness of response by panelists, (2) the reliability of the demographic information they self-report, and (3) the generalizability of the characteristics of panelists to the US general population. A secondary objective was to highlight several issues to consider when selecting a panel vendor. MethodsWe recruited a sample of US adults from 7 panel vendors using identical quotas and online surveys. All vendors met prespecified inclusion criteria. Panels were compared on the basis of how long the respondents took to complete the survey from time of initial invitation. To validate respondent identity, this study examined the proportion of consented respondents who failed to meet the technical criteria, failed to complete the screener questions, and provided discordant responses. Finally, characteristics of the respondents were compared to US census data and to the characteristics of other panels. ResultsAcross the 7 panel vendors, 2% to 9% of panelists responded within 2 days of invitation; however, approximately 20% of the respondents failed the screener, largely because of the discordance between self-reported birth date and the birth date in panel entry data. Although geographic characteristics largely agreed with US Census estimates, each sample underrepresented adults who did not graduate from high school and/or had annual incomes less than US $15,000. Except for 1 vendor, panel vendor samples overlapped one another by approximately 20% (ie, 1 in 5 respondents participated through 2 or more panel vendors). ConclusionsThe results of this head-to-head comparison provide potential benchmarks in panel quality. The issues to consider when selecting panel vendors include responsiveness, failure to maintain sociodemographic diversity and validated data, and potential overlap between panels.