BMC Medicine (Dec 2022)

Links between electroconvulsive therapy responsive and cognitive impairment multimodal brain networks in late-life major depressive disorder

  • Shile Qi,
  • Vince D. Calhoun,
  • Daoqiang Zhang,
  • Jeremy Miller,
  • Zhi-De Deng,
  • Katherine L. Narr,
  • Yvette Sheline,
  • Shawn M. McClintock,
  • Rongtao Jiang,
  • Xiao Yang,
  • Joel Upston,
  • Tom Jones,
  • Jing Sui,
  • Christopher C. Abbott

DOI
https://doi.org/10.1186/s12916-022-02678-6
Journal volume & issue
Vol. 20, no. 1
pp. 1 – 13

Abstract

Read online

Abstract Background Although electroconvulsive therapy (ECT) is an effective treatment for depression, ECT cognitive impairment remains a major concern. The neurobiological underpinnings and mechanisms underlying ECT antidepressant and cognitive impairment effects remain unknown. This investigation aims to identify ECT antidepressant-response and cognitive-impairment multimodal brain networks and assesses whether they are associated with the ECT-induced electric field (E-field) with an optimal pulse amplitude estimation. Methods A single site clinical trial focused on amplitude (600, 700, and 800 mA) included longitudinal multimodal imaging and clinical and cognitive assessments completed before and immediately after the ECT series (n = 54) for late-life depression. Another two independent validation cohorts (n = 84, n = 260) were included. Symptom and cognition were used as references to supervise fMRI and sMRI fusion to identify ECT antidepressant-response and cognitive-impairment multimodal brain networks. Correlations between ECT-induced E-field within these two networks and clinical and cognitive outcomes were calculated. An optimal pulse amplitude was estimated based on E-field within antidepressant-response and cognitive-impairment networks. Results Decreased function in the superior orbitofrontal cortex and caudate accompanied with increased volume in medial temporal cortex showed covarying functional and structural alterations in both antidepressant-response and cognitive-impairment networks. Volume increases in the hippocampal complex and thalamus were antidepressant-response specific, and functional decreases in the amygdala and hippocampal complex were cognitive-impairment specific, which were validated in two independent datasets. The E-field within these two networks showed an inverse relationship with HDRS reduction and cognitive impairment. The optimal E-filed range as [92.7–113.9] V/m was estimated to maximize antidepressant outcomes without compromising cognitive safety. Conclusions The large degree of overlap between antidepressant-response and cognitive-impairment networks challenges parameter development focused on precise E-field dosing with new electrode placements. The determination of the optimal individualized ECT amplitude within the antidepressant and cognitive networks may improve the treatment benefit–risk ratio. Trial registration ClinicalTrials.gov Identifier: NCT02999269.

Keywords