Sensors (Mar 2020)

Collaborative Multi-Expert Active Learning for Mobile Health Monitoring: Architecture, Algorithms, and Evaluation

  • Ramyar Saeedi,
  • Keyvan Sasani,
  • Assefaw H. Gebremedhin

DOI
https://doi.org/10.3390/s20071932
Journal volume & issue
Vol. 20, no. 7
p. 1932

Abstract

Read online

Mobile health monitoring plays a central role in the future of cyber physical systems (CPS) for healthcare applications. Such monitoring systems need to process user data accurately. Unlike in other human-centered CPS, in healthcare CPS, the user functions in multiple roles all at the same time: as an operator, an actuator, the physical environment and, most importantly, the target that needs to be monitored in the process. Therefore, mobile health CPS devices face highly dynamic settings generally, and accuracy of the machine learning models the devices employ may drop dramatically every time a change in setting happens. Novel learning architecture that specifically address challenges associated with dynamic environments are therefore needed. Using active learning and transfer learning as organizing principles, we propose a collaborative multiple-expert architecture and accompanying algorithms for the design of machine learning models that autonomously adapt to a new configuration, context, or user need. Specifically, our architecture and its constituent algorithms are designed to manage heterogeneous knowledge sources or experts with varying levels of confidence and type while minimizing adaptation cost. Additionally, our framework incorporates a mechanism for collaboration among experts to enrich their knowledge, which in turn decreases both cost and uncertainty of data labeling in future steps. We evaluate the efficacy of the architecture using two publicly available human activity datasets. We attain activity recognition accuracy of over 85 % (for the first dataset) and 92 % (for the second dataset) by labeling only 15 % of unlabeled data.

Keywords