Remote Sensing (May 2023)
Spectral Correlation and Spatial High–Low Frequency Information of Hyperspectral Image Super-Resolution Network
Abstract
Hyperspectral images (HSIs) generally contain tens or even hundreds of spectral segments within a specific frequency range. Due to the limitations and cost of imaging sensors, HSIs often trade spatial resolution for finer band resolution. To compensate for the loss of spatial resolution and maintain a balance between space and spectrum, existing algorithms were used to obtain excellent results. However, these algorithms could not fully mine the coupling relationship between the spectral domain and spatial domain of HSIs. In this study, we presented a spectral correlation and spatial high–low frequency information of a hyperspectral image super-resolution network (SCSFINet) based on the spectrum-guided attention for analyzing the information already obtained from HSIs. The core of our algorithms was the spectral and spatial feature extraction module (SSFM), consisting of two key elements: (a) spectrum-guided attention fusion (SGAF) using SGSA/SGCA and CFJSF to extract spectral–spatial and spectral–channel joint feature attention, and (b) high- and low-frequency separated multi-level feature fusion (FSMFF) for fusing the multi-level information. In the final stage of upsampling, we proposed the channel grouping and fusion (CGF) module, which can group feature channels and extract and merge features within and between groups to further refine the features and provide finer feature details for sub-pixel convolution. The test on the three general hyperspectral datasets, compared to the existing hyperspectral super-resolution algorithms, suggested the advantage of our method.
Keywords