Fractal and Fractional (Sep 2024)

A K-Space-Based Temporal Compensating Scheme for a First-Order Viscoacoustic Wave Equation with Fractional Laplace Operators

  • Juan Chen,
  • Fei Li,
  • Ning Wang,
  • Yinfeng Wang,
  • Yang Mu,
  • Ying Shi

DOI
https://doi.org/10.3390/fractalfract8100574
Journal volume & issue
Vol. 8, no. 10
p. 574

Abstract

Read online

Inherent constant Q attenuation can be described using fractional Laplacian operators. Typically, the fractional Laplacian viscoacoustic or viscoelastic wave equations are addressed utilizing the staggered-grid pseudo-spectral (SGPS) method. However, this approach results in time numerical dispersion errors due to the low-order finite difference approximation. In order to address these time-stepping errors, a k-space-based temporal compensating scheme is established to solve the first-order viscoacoustic wave equation. This scheme offers the advantage of being nearly free from grid dispersion for homogeneous media and enhances simulation stability. Numerical examples indicate that the proposed k-space scheme aligns well with analytical solutions for homogeneous media. Additionally, this method demonstrates excellent applicability for complex models and is more efficient due to its ability to adopt a larger time step compared with conventional staggered-grid pseudo-spectral methods.

Keywords