Journal of Translational Medicine (Oct 2022)

MicroRNA-223 negatively regulates the osteogenic differentiation of periodontal ligament derived cells by directly targeting growth factor receptors

  • Zheng Zhang,
  • Minghui Wang,
  • Youli Zheng,
  • Yanmei Dai,
  • Jiashu Chou,
  • Xiaowei Bian,
  • Pengcheng Wang,
  • Changyi Li,
  • Jing Shen

DOI
https://doi.org/10.1186/s12967-022-03676-1
Journal volume & issue
Vol. 20, no. 1
pp. 1 – 15

Abstract

Read online

Abstract Background MicroRNA (miRNA) is accepted as a critical regulator of cell differentiation. However, whether microRNA-223 (miR-223) could affect the osteogenic differentiation of periodontal ligament (PDL)-derived cells is still unknown. The aim of this study was to explore the mechanisms underlying the roles of miR-223 in the osteogenesis of PDL-derived cells in periodontitis. Methods Microarray analysis and real-time polymerase chain reaction (RT-PCR) were used to identify difference in miR-223 expression pattern between healthy and inflamed gingival tissue. The target genes of miR-223 were predicted based on Targetscan and selected for enrichment analyses based on Metascape database. The gain-and loss-of-function experiments were performed to discuss roles of miR-223 and growth factor receptor genes in osteogenic differentiation of PDL-derived cells. The target relationship between miR-223 and growth factor receptor genes was confirmed by a dual luciferase assay. Osteogenic differentiation of PDL-derived cells was assessed by Alizarin red staining, RT-PCR and western blot detection of osteogenic markers, including osteocalcin (OCN), osteopontin (OPN) and runt-related transcription factor 2 (Runx2). Results MiR-223 was significantly increased in inflamed gingival tissues and down-regulated in PDL-derived cells during osteogenesis. The expression of miR-223 in gingival tissues was positively correlated with the clinical parameters in periodontitis patients. Overexpression of miR-223 markedly inhibited PDL-derived cells osteogenesis, which was evidenced by reduced Alizarin red staining and osteogenic markers expressions. Furthermore, two growth factor receptor genes, including fibroblast growth factor receptor 2 (FGFR2) and transforming growth factor beta receptor 2 (TGFβR2), were revealed to be direct targets of miR-223 and shown to undergo up-regulation in PDL-derived cells during osteogenesis. Moreover, suppression of FGFR2 or TGFβR2 dramatically blocked PDL-derived cells osteogenic differentiation. Conclusions Our study provides novel evidence that miR-223 can be induced by periodontitis and acts as a negative regulator of PDL-derived cells osteogenesis by targeting two growth factor receptors (TGFβR2 and FGFR2).

Keywords