BMC Microbiology (Jan 2006)

A novel surface protein of <it>Trichomonas vaginalis </it>is regulated independently by low iron and contact with vaginal epithelial cells

  • Chang T-H,
  • Kucknoor AS,
  • Mundodi V,
  • Alderete JF

DOI
https://doi.org/10.1186/1471-2180-6-6
Journal volume & issue
Vol. 6, no. 1
p. 6

Abstract

Read online

Abstract Background Trichomonosis caused by Trichomonas vaginalis is the number one, non-viral sexually transmitted disease (STD) that affects more than 250 million people worldwide. Immunoglobulin A (IgA) has been implicated in resistance to mucosal infections by pathogens. No reports are available of IgA-reactive proteins and the role, if any, of this class of antibody in the control of this STD. The availability of an IgA monoclonal antibody (mAb) immunoreactive to trichomonads by whole cell (WC)-ELISA prompted us to characterize the IgA-reactive protein of T. vaginalis. Results An IgA mAb called 6B8 was isolated from a library of mAbs reactive to surface proteins of T. vaginalis. The 6B8 mAb recognized a 44-kDa protein (TV44) by immunoblot analysis, and a full-length cDNA clone encoded a protein of 438 amino acids. Southern analysis revealed the gene (tv44) of T. vaginalis to be single copy. The tv44 gene was down-regulated at both the transcriptional and translational levels in iron-depleted trichomonads as well as in parasites after contact with immortalized MS-74 vaginal epithelial cells (VECs). Immunofluorescence on non-permeabilized organisms confirmed surface localization of TV44, and the intensity of fluorescence was reduced after parasite adherence to VECs. Lastly, an identical protein and gene were present in Tritrichomonas foetus and Trichomonas tenax. Conclusion This is the first report of a T. vaginalis gene (tv44) encoding a surface protein (TV44) reactive with an IgA mAb, and both gene and protein were conserved in human and bovine trichomonads. Further, TV44 is independently down-regulated in expression and surface placement by iron and contact with VECs. TV44 is another member of T. vaginalis genes that are regulated by at least two independent signaling mechanisms involving iron and contact with VECs.