PLoS ONE (Jan 2018)

Ecological interactions between Gulf of Mexico snappers (Teleostei: Lutjanidae) and invasive red lionfish (Pterois volitans).

  • Anthony R Marshak,
  • Kenneth L Heck,
  • Zachary R Jud

DOI
https://doi.org/10.1371/journal.pone.0206749
Journal volume & issue
Vol. 13, no. 11
p. e0206749

Abstract

Read online

Indo-Pacific red lionfish (Pterois volitans) have invaded the western Atlantic, and most recently the northern Gulf of Mexico (nGOM), at a rapid pace. Given their generalist habitat affinities and diet, and strong ecological overlap with members of the commercially valuable snapper-grouper complex, increased density and abundance of lionfish could result in significant competitive interactions with nGOM commercially important species. We experimentally investigated the intensity of behavioral interactions between lionfish and indigenous, abundant and economically important juvenile nGOM red snapper (Lutjanus campechanus), and other increasingly abundant juvenile tropical snapper species (gray snapper-L. griseus and lane snapper-L. synagris) in large outdoor mesocosms to examine snapper vulnerabilities to lionfish competition. When paired with lionfish, red snapper swimming activity (i.e., time swimming and roving around experimental tank or at structure habitat during experiments) was significantly lower than in intraspecific control trials, but gray and lane snapper swimming activities in the presence of lionfish did not significantly differ from their intraspecific controls. Additionally in paired trials, red and lane snapper swimming activities were significantly lower than those of lionfish, while no significant difference in swimming activities was observed between lionfish and gray snapper. We found that red snapper prey consumption rates in the presence of lionfish were significantly lower than in their intraspecific 3-individual control trials, but when paired together no significant differences in prey consumption rates between red snapper and lionfish were observed. When paired with lane or gray snapper, lionfish were observed having comparatively higher prey consumption than snappers, or as observed in lionfish intraspecific 1-individual controls. However, lane and gray snapper consumption rates in the presence of lionfish did not significantly differ from those in intraspecific controls. These findings suggest that competition between juvenile snappers and invasive lionfish may be variable, with lionfish exhibiting differing degrees of competitive dominance and snappers exhibiting partial competitive vulnerability and resistance to lionfish. While the degree of intensity at which these interactions may occur in nGOM reefs may differ from those observed in our findings, this study enables greater understanding of the potential ecological effects of red lionfish on native reef fishes.