Journal of Oral Biology and Craniofacial Research (Mar 2024)

Synthesis and evaluation of the antifungal activity of 5-hydroxy-3-phenyl-1H-pyrazole-1-carbothioamide for use in the oral environment

  • Hossein Amin Zadeh,
  • Ali Asghar Zomorodkia,
  • Saeid Hadi,
  • Iman Mohammad Zadeh,
  • Seyed Abd Alreza Sabetghadam,
  • Vahid Hadi

Journal volume & issue
Vol. 14, no. 2
pp. 211 – 215

Abstract

Read online

Background and aim: Candida albicans and Candida tropicalis, can cause superficial infections of the oral mucosa as well as disseminated bloodstream and deep-tissue infections. The most frequently employed class of antifungals used for Candida infection treatment are the azole antifungals. Their low price, low toxic qualities, and availability for oral use make fluconazole and similar azole antifungals the preferred treatment for various infections caused by Candida. Nevertheless, developed and intrinsic resistance to antifungals of the azole family has been widely documented in association with various species of Candida. Candida infection management requires synthesizing new compounds to improve azole class antifungals, as Candida isolates resistant to azole are increasingly encountered in the clinical setting. This study aimed to synthesize a new azole compound and investigate its antifungal activity. Methods: In this experimental study, 5-hydroxy-3-phenyl-1H-pyrazole-1-carbothioamide was synthesized by the reaction between thiosemecarbazide and ethylbezoylacetate. The structure of the synthesized compound was characterized by different techniques such as Fourier transform infrared (FT-IR) and nuclear magnetic resonance (NMR) spectra and its antifungal activity against Candida albicans and Candida tropicalis was investigated by the Spread Plat method to determine its minimum fungicidal concentration (MFC) and minimum inhibitory concentration (MIC). Results and discussion: The Spread Plat test demonstrated that with the increase in 5-hydroxy-3-phenyl-1H-pyrazole-1-carbothioamide concentration, colonies of fungi were increasingly eliminated at a significant level(p < 0.001). At a concentration of 1000 ppm, all Candida albicans and Candida tropicalis colonies were destroyed. Conclusions: The results indicate that the synthesized compound showed a promising antifungal effect. On the other hand, it had a suitable spectrum of effect, because it showed antifungal effects on both Candida albicans and Candida tropicalis strains.

Keywords