Horticulturae (Jul 2024)
Evaluating the Cold Tolerance of <i>Stenotaphrum</i> Trin Plants by Integrating Their Performance at Both Fall Dormancy and Spring Green-Up
Abstract
Owing to the poor cold tolerance of Stenotaphrum Trin and the urgent need for shade-tolerant grass species in temperate regions of East China, this study evaluated the cold tolerance of 55 Stenotaphrum accessions, aiming to provide shade-tolerant materials for temperate regions. A fine cold-tolerant turfgrass should have both the advantages of delayed fall dormancy and early spring green-up. However, previous research on the cold resistance of turfgrass has mainly focused on the performance of the spring green-up, with less attention paid to the fall dormancy, which has affected the ornamental and application value of turfgrass. This study first dynamically investigated the leaf colour of each accession during the fall dormancy and the coverage during the spring green-up and evaluated the cold resistance of the accession through membership functions and cluster analysis. Significant differences in the cold resistance were found with the assignment of breeding lines to four categories. The weak correlation (R2 = 0.1682) between leaf colour during the fall dormancy and coverage during the spring green-up indicates that using the performance of a single period to represent the cold resistance of accessions is not appropriate. To test whether using the laboratory-based LT50 and stolon regrowth rating analysis can replace the above-improved method, we conducted a related analysis and found that the fit between these two methods is very poor. This phenomenon is attributed to the poor correlation between the laboratory-based parameters and the pot-investigated data. Therefore, this study presents a cold resistance evaluation method for Stenotaphrum that integrates performance in both the fall dormancy and spring green-up periods. This improved evaluation method cannot be simplified by the growth performance of a single period or replaced by using laboratory-based LT50 and stolon regrowth tests. With the help of this improved method, several excellent cold tolerance accessions (ST003, S13, and S12) were identified for temperate regions of East China.
Keywords